skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zepernick, Brittany"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blanchard, Jeffrey Lawrence (Ed.)
    ABSTRACT Winter is a relatively under-studied season in freshwater ecology. The paucity of wintertime surveys has led to a lack of knowledge regarding microbial community activity during the winter in Lake Erie, a North American Great Lake. Viruses shape microbial communities and regulate biogeochemical cycles by acting as top-down controls, yet very few efforts have been made to examine active virus populations during the winter in Lake Erie. Furthermore, climate change-driven declines in seasonal ice cover have been shown to influence microbial community structure, but no studies have compared viral community activity between different ice cover conditions. We surveyed surface water metatranscriptomes for viral hallmark genes as a proxy for active virus populations and compared activity metrics between ice-covered and ice-free conditions from two sampled winters. Transcriptionally active viral communities were detected in both winters, spanning diverse phylogenetic clades of putative bacteriophage (Caudoviricetes), giant viruses (Nucleocytoviricota, or NCLDV), and RNA viruses (Orthornavirae). However, viral community activity metrics revealed pronounced differences between the ice-covered and ice-free winters. Viral community composition was distinct between winters and viral hallmark gene richness was reduced in the ice-covered relative to the ice-free conditions. In addition, the observed differences in viral communities correlated with microbial community activity metrics. Overall, these findings contribute to our understanding of the viral populations that are active during the winter in Lake Erie and suggest that viral community activity may be associated with ice cover extent.IMPORTANCEAs seasonal ice cover is projected to become increasingly rare on large temperate lakes, there is a need to understand how microbial communities might respond to changing ice conditions. Although it is widely recognized that viruses impact microbial community structure and function, there is little known regarding wintertime viral activity or the relationship between viral activity and ice cover extent. Our metatranscriptomic analyses indicated that viruses were transcriptionally active in the winter surface waters of Lake Erie. These findings also expanded the known diversity of viral lineages in the Great Lakes. Notably, viral community activity metrics were significantly different between the two sampled winters. The pronounced differences we observed in active viral communities between the ice-covered and ice-free samples merit further research regarding how viral communities will function in future, potentially ice-free, freshwater systems. 
    more » « less
  2. Stedman, Kenneth M (Ed.)
    ABSTRACT Here, we report on the raw and coassembled metatranscriptomes of 39 Lake Erie surface (1.0 m) water samples collected over a 2-day diel period encompassing episodic weather and bloom events. Preliminary taxonomic annotations and read mappings revealed thatMicrocystisspp. accounted for up to ~47% of the transcriptionally active community. 
    more » « less
    Free, publicly-accessible full text available November 12, 2025
  3. Lake Victoria has experienced progressive eutrophication which has exacerbated the proliferation of cyanobacterial harmful algal blooms (cHABs). Fueled by anthropogenic nutrient loadings and climate change, these cHABs are increasing in distribution, duration, and frequency, particularly in areas such as the Winam Gulf. With limited resources and infrastructure, local communities have been left vulnerable as they rely on the lake for water for domestic use. Our study presents the results of a localized survey on how small-scale fishing communities perceive and respond to the threat of cHABs in the Winam Gulf of Lake Victoria, Kenya. We used a mixed-methods approach of quantitative and qualitative data-gathering techniques to elucidate the perceptions and consequences of cHABs in local communities. Our results demonstrate most (93.67%) respondents were aware of cHABs in the lake, but were not knowledgeable of cHAB threats to human and animal health. Respondents noted that fish catches decreased during cHABs, with this economic consequence serving as a primary concern of communities. Notably, respondents altered their use of lake water during perceived cHAB events and relied on other means of water treatment or alternative water sources. Overall, cHAB information was selfsourced or passed on from community elders, with no public mechanism for adequate cHAB risk communication. Lake Victoria serves as a critical resource to the Eastern African region and requires a concerted cHAB response effort. Therefore, we recommend the development of a public awareness program to reduce cHAB exposure in these at-risk communities. 
    more » « less
  4. Stajich, Jason E. (Ed.)
    ABSTRACT Here, we report the assembled and annotated genome of the freshwater diatom Fragilaria crotonensis SAG 28.96. The 61.85-Mb nuclear genome was assembled into 879 contigs, has a GC content of 47.40%, contains 26,015 predicted genes, and shows completeness of 81%. 
    more » « less
  5. Biddle, Jennifer F (Ed.)
    ABSTRACT The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf’s cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf’s cyanobacterial composition, function, and biosynthetic potential.Dolichospermumwas the dominant bloom-forming cyanobacterium, co-occurring withMicrocystisat most sites.MicrocystisandPlanktothrixwere more abundant in shallow and turbid sites. Metagenome-assembled genomes (MAGs) ofDolichospermumharbored nitrogen fixation genes, suggesting diazotrophy as a potential mechanism supporting the proliferation ofDolichospermumin the nitrogen-limited gulf. Over 300 biosynthetic gene clusters (BGCs) putatively encoding the synthesis of toxins and other secondary metabolites were identified across the gulf, even at sites where there were no visible cyanoHAB events. Almost all BGCs identified had no known synthesis product, indicating a diverse and novel biosynthetic repertoire capable of synthesizing harmful or potentially therapeutic metabolites.MicrocystisMAGs containedmcygenes encoding the synthesis of hepatotoxic microcystins which are a concern for drinking water safety. These findings illustrate the spatial variation of bloom-forming cyanobacteria in the Winam Gulf and their available strategies to dominate different ecological niches. This study underscores the need for further use of genomic techniques to elucidate the dynamics and mitigate the potentially harmful effects of cyanoHABs and their associated toxins on human, environmental, and economic health. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026
  6. The Nile perch (Lates niloticus L.) commercial fishery for Lake Victoria in East Africa is an important source of revenue and employment. We focused on shifts in food web structure and total mercury (THg) bioaccumulation and biomagnification in Nile perch, and lower food web items collected from Winam Gulf (Kenya) sampled 24 years apart (1998 and 2022). Stable isotope carbon (δ13C) values were higher in all species from 2022 compared to 1998. Stable nitrogen isotope (δ15N) values in baseline organisms were lower in 2022 compared to 1998. In Nile perch, δ15N values were correlated with total length, but the δ15N-length regressions were steeper in 1998 compared to 2022 except for one large (158 cm) Nile perch from 1998 with an uncharacteristically low δ15N value. Total Hg concentrations were lower in lower trophic species from 2022 compared to 1998. However, the THg bioaccumulation rate (as a function of fish length) in Nile perch was greater in 2022 compared to 1998 resulting in 24.2 % to 42.4 % higher wet weight dorsal THg concentrations in 2022 Nile perch for market slot size (50 to 85 cm) fish. The contrasting observations of increased THg bioaccumulation with size in 2022 against decreases in the rate of trophic increase with size and lower THg concentrations of lower food web items imply reduced fish growth and potential bioenergetic stressors on Winam Gulf Nile perch. All samples except 1 large Nile perch (139 cm total length collected in 2022) had THg concentrations below the European Union trade limit (500 ng/g wet weight). However, for more vulnerable individuals (women, children and frequent fish eaters), we recommend a decrease in maximum monthly meal consumption for 55–75 cm Nile perch from 16 meals per month calculated for 1998 to a limit of 8 meals per month calculated for 2022. 
    more » « less
  7. Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria Microcystis spp., can increase water column pH. While the effect(s) of these basified conditions on the bloom formers are a high research priority, how these pH shifts affect other biota remains understudied. Recently, it was shown these high pH levels decrease growth and Si deposition rates in the freshwater diatom Fragilaria crotonensis and natural Lake Erie (Canada-US) diatom populations. However, the physiological mechanisms and transcriptional responses of diatoms associated with these observations remain to be documented. Here, we examined F. crotonensis with a set of morphological, physiological, and transcriptomic tools to identify cellular responses to high pH. We suggest 2 potential mechanisms that may contribute to morphological and physiological pH effects observed in F. crotonensis . Moreover, we identified a significant upregulation of mobile genetic elements in the F. crotonensis genome which appear to be an extreme transcriptional response to this abiotic stress to enhance cellular evolution rates–a process we have termed “ genomic roulette. ” We discuss the ecological and biogeochemical effects high pH conditions impose on fresh waters and suggest a means by which freshwater diatoms such as F. crotonensis may evade high pH stress to survive in a “basified” future. 
    more » « less
  8. Newton, Irene_L G (Ed.)
    ABSTRACT We report 40 metagenomic libraries collected from the Winam Gulf of Lake Victoria during May–July of 2022–2023 and an additional eight opportunistic libraries from adjacent Lakes Simbi, Naivasha, and regional river systems. The sampling period captured cyanobacterial bloom events – shedding insight onto community composition and genomic potential. 
    more » « less
    Free, publicly-accessible full text available November 12, 2025